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TECHNICAL REPORT SUMARY

The principal effort during the period covered by this report has been

directed to developing more thorough understanding of the proper way to account

for the effects of the properties of the real Earth on the amplitudes and

spectra of seismic body waves. The results of these studies will contribute

to the further-development of procedures for determining the energy released

* at the source and the mechanics of the source from the body-waves observed

at large distances.

1. A full-wave theory applicable to the synthesis of body-waves at

* epicentral distances of 10* to 400, for propagation through an upper mantle with

either first-order discontinuities or intense but continuous variations in

elastic properties has been developed. The theory for discontinuous velocity

changes has been applied to the synthesis of SH waves for an Earth with

discontinuities in density and velocity at depths of 420 km and 670 km. Arrivals

'- with decreasing amplitudes at distances beyond the cuspsl. predicted by geometric

* ray theory are clearly shown.

One way of modeling a region of rapidly changing properties is by the use

of a large number of thin homogeneous layers. This approach requires a

lengthy calculation of reflection-transmission coefficients. The use of higher-

order Langer approximations of the radial elgenfunctions leads to a more

* efficient technique for treating this problem. When a region of strong

* gradients in physical properties is sufficiently far from the source and

receiver, the scattering caused by the region results in waves arriving at

points far from the receiver or at times removed from the arrival time of the

transmitted wave. The resulting reduction in amplitude of P and SV waves

represents a strong non-anelastic attenuation.
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2. An attempt has been made to resolve Aportion of the frequency

dependence of Q_ using P and S body-wave spectra from shallow and deep

earthquakes. Various theories of specific dissipation mechanism and of the

anelastic attenuation correction of body waves have been reviewed. Under the

structure of those theories, a model of Q -1(f) is proposed in which Q -1is

constant at low frequencies but decays beyond a high frequency cutoff which

is a model parameter. The model is tested by assuming high frequency spectral

decay slopes of 6,oth -2 and WP and S waves are tested independently,

and a decay in the absorption spectrum is found for both. However, the

required modulation is not the same for the two wave types, suggesting the

existence of a bulk-loss mechanism which attenuates a narrow range of P-wave

frequencies. The depth dependence of Q Mf shows that the bulk-loss

mechanism is concentrated almost entirely in the asthenosphere, while the

shear loss mechanisms are distributed in a complex way throughout the mantle.

3. Two applications of elastodynamic Green's functions have been developed.~

First, the Green's function representation of a wave field is used to generate

an equivalent elastic field that analytically reproduces the field identical

to the numerical representation. Then this analytical representation can be

used easily and efficiently to predict the further propagation of the field to

long distances. The second application uses the Green's function representation

to effect a transparent grid boundary for numerical program calculations.
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" 1. BODY-WAVE SYNTHESIS AT 10-40

V.F. Cormier

Upper Mantle with First-Order Discontinuities

ln sction

Theoretical seismograms enable the amplitude and waveform of body

waves to be incorporated as constraints in an inversion scheme for an

earth model or the source time function of an earthquake or explosion.

The lower mantle has long been known from travel time studies to be nearly

laterally homogeneous and to have elastic moduli and density gradients

that vary smoothly and slowly over large ranges of depth. Consequently,

in the distance range 40-80* simple geometric ray theory that includes

surface reflections combined with a simple source description is sufficient

to synthesize the observed waveform of body waves (Herrmann, 1975). At

shorter distances, however, geometric ray theory must be abandoned in

favor of a full wave theory that includes non-ray theoretical effects of

waves grazing regions in the upper mantle and crust having discontinuous

and/or rapid variations in velocity and density.

Theoretical seismograms incorporating suchAh full wave theory can be

generated by a variety of methods, but in general all start with a

representation of the form

co

u(A03t) =- JW 1/2 Re ff e'jdpe±"') do 11
Tr f0 r

Eq. 1.1 is appropriate for an explosive point source observed at the earth's
surface at distance A and time t , where r is a path in the complex

0

ray parameter (p) plane, f is a product of reflection-transmission
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coefficients and the source-receiver directivity function, and J(p,Ao )

is the phase delay factor.

The phase delay factor is related to the travel time and distance

integrals by

J(p,Ao ) T(p) - pA(p) + pAo (1.2)

More specifically the phase delay factor is given by

.) _ J [l/a(r) p2  2]1/2

rp

+ f [1/a 2 (r)-p/r - dr+PAO (1.3)

rp

where ro  is the radius of the receiver, r. the radius at the source,

rp the radius at which the integrand vanishes, and the integrand is

related to the cosine of the angle of incidence by

[1/ca2 (r) - p 2 /rI/ = cos i/a(r) (1.4)

Thus the radius r is the turning point radius, that radius where the

ray bottoms and cos i = 0.

Pucha and Millerts (1971) reflectivity method converts the integral

over the ray parameter to one over real angles of incidence in which the

curvature and radial heterogeneity of the earth is modeled by a stack of

.: homogeneous flat layers, the factor f representing the effect of the

infinite set of multiple reflections possible in the layer stack. Some
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methods obtain a solution in the time domain by directly operating with

Eq. I . The Cagniard method for a sphere (Gilbert and Helmberger, 1972)

* achieves this by operating with Eq. 1.1 in terms of Laplace transforms,

in which -iw - s , and choosing the path in the complex ray parameter

plane to be exactly a path of stationary phase. Chapman (1976) described

how the solution in the time domain can also be obtained by the first

motion approximation, which evaluates the double integral in Eq. 1.1

by the equal phase method.

Richards (1973) enumerated the advantages that accrue to the more

general procedure of solving the inner integral in the frequency domain

by a numerical integration along a path r in the complex ray parameter

plane and then obtaining the time domain solution by inverse Fourier

transformation. In review, these advantages are (I) that, unlike the

Cagniard method, the path r may remain fixed for a series of distances,

the only constraints being that r be sufficiently near all ray theory

saddles and end in regions in which the integrand is exponentially small;

(ii) that the method can be extended for ray paths having a turning point;

(iiI) that the path r automatically includes the non-ray theoretical

effects of diffraction given by the residue contribution of ray parameter

poles in the reflection-transmission coefficients; and (iv) that effects

of attenuation are easily incorporated by allowing the velocity profile

to be complex.

Incorporation of Attenuation

Since the solution formulae (Eqs. 1.1-1.4) are all analytical in velocity,

the solution for an attenuating earth is given by analytic continuation
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to a complex velocity profile defined in terms of a Q and a real

velocity model (Cormier and Richards, 1976). The observation that the

Q of the earth is observed to be nearly frequency independent over the

-2 3
broad band of seismic frequencies (10 - 10 Hz) coupled with the

hypothesis that the attenuation mechanism be linear leads to the relation

for the complex velocity profile

v(r,W2) = vR(r,wl) I + Q() n ") 2Q (r) (1.5)

(Liu et al., 1976), where vR(r,wl) is the real velocity profile determined

at the reference frequency wl and Qo(r) is the Q profile. Many

other representations for Q can be derived by allowing for different

distributions of discrete relaxation mechanisms with unequal strengths

over the same frequency band.

Under several conditions the dispersive term in Eq. 1.5 can be

neglected, resulting in the relation

(r) - vR(r) 1 2Qo(r) (1.6)

The conditions under which dispersion can be neglected are that

1. calculations incorporating v(r) be over a sufficiently narrow

frequency band;

II. Qo(r) be sufficiently large; and

III. the real velocity profile VR(r) be determined from data in a

frequency band coincident with that of the calculation.

[u



When either condition I or II is not met, the dispersive effect of

attenuation will be manifest in a change of the shape and rise time of

a propagating pulse (Futterman, 1962). Although conditions I and II

affecting pulse shape may be satisfied by the pass band of most seismograph

systems combined with reasonable models of the anelasticity of the upper

mantle, condition III, which can bias travel times, may not. Thus

knowledge of the deviation from "average" anelastic properties along a

ray path may assist in applying a travel time correction when the art

time of that ray is used in a location determination.

A time domain study of anelasticity's effects on amplitudes, tra

times, and rise times of body waves may clarify the nature of the freq.cucy

dependent anelasticity inferred from body wave spectra as reported by

Lundquist (1976).

Preliminary Results

The method described by Cormier and Richards (1977) for synthesizing

the seismogram of a body wave interacting with a discontinuous velocity

increase has been extended to synthesize seismograms interacting with

two or more such increases with any arbitrarily close spacing in depth.

A test of the method was begun by synthesizing the waveform of a SH

wave having a delta source time function interacting with discontinuous

velocity and density increases at 420 and 670 km depth. Figure 1.1 is a

reduced travel time curve for SH waves in this earth model. Initial

* calculations incorporated a complex velocity profile of the type given

by Eq. (5) but with Q0 (r) taken to be > 105 . Later calculations will

test the effect of anelasticity on waveform and apparent travel times

S
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with reasonable Q models of the upper mantle.

Figure 1:2 shows the synthesized SH waveforms in the distance range

30-340. Note that the abrupt cutoff of a ray arrival at cusp D at

28* predicted by geometrical ray theory (valid at infinite frequency)

becomes (at finite frequency) a gradual decay in amplitude at distances

greater than D . Note also that the interference head waves associated

with the 420 and 670 km discontinuities persist for long distances at

which the simply transmitted ray bottoms below both discontinuities.

The amplitude of such head waves has been shown to be strongly sensitive

to the anelastic properties along the underside of the velocity

discontinuities (Hill, 1971).

Interference of the travel time branches results in a maximum peak-

to-peak amplitude of the SH body wave near 200 (HelImberger and Engen,

1974). The amplitude growth near 20* dill be diagnostic of both the

elastic and anelastic properties of the earth in the depth range 300-700

km. Only a synthesis incorporating both properties as depth dependent

parameters can separate their competing effects (Kennett, 1975).

Synthetics for long period SH body waves will be completed for the

distance range 120-34* for an earth model with sharp discontinuities in

the upper mantle and for several attenuation mechanism models in the depth

range 100-700 km. It is hoped that by comparison with observed SH

waveforms in this distance range some new constraints may be obtained

regarding elastic and anelastic structure in the upper mantle.

I

4
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Upper mantle with regions of intense but continuous variations

in elastic properties

Introduction

By proper choice of the radial eigenfunctions that solve the

potential wave equation in an inhomogeneous medium, the number of layers

required to describe the medium is minimized and thereby also the number

of reflection-transmission coefficients required to be evaluated in the

factor f in Eq. 1.1. By allowing the layers to be inhomogeneous, in

which the elastic properties vary slowly, only the coefficients associated

with first-order discontinuities need to be evaluated. Langer's uniformly

asymptotic approximation to the radial eigenfunctions can be used to

evaluate coefficients that are valid for ray parameters corresponding to

rays both near grazing and steep incidence to a discontinuity (Richards,

1976).

Suppose now, however, that the medium contained no first order

discontinuities but only thin regions in which elastic properties varied

rapidly, bounded by at most second-order discontinuities. Figure 1.3

compares two possible velocity distributions in the upper mantle

assuming either first order discontinuities or continuous variation in

elastic properties. A representation of displacement such as Eq. 1.1

can be obtained for a continuous medium in either the Cagniard or

reflectivity methods by modeling the regions of rapid variation by a

sequence of many thin homogeneous layers.

I
6-
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Fig. 1.3 Possible veloicty distributions in the upper mantle. Solid line -
/

1066B (Gilbert and Dziewonski, 1975), dash.d line - SHR14

(Helmberger and Engen, 1974).
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Second Order Wave Equations

To avoid a lengthy calculation for the factor f to include the

many possible multiple reflections in such a stack of layers, one can seek

a higher-order approximation to the radial eigenfunction. Such an

approximation must be accurate at the lowest frequencies required to

synthesize long period body waves and can be obtained from the second-

order Helmholtz equations satisfied by P, SV, and SH potentials. These

potentials are given by Richards (1974) as

2 K1 aV2P + p 2+2 P + Ep p /22 I
+211 1/2 2 ar 2) (1.7a)

2K 1 Ur 1au r U I\
VV+ 2 V+ E V 0 + (1.7b)P •V1/ r sin o 2f r ¥ "/ 2) .

2

S2H +  H + CH 0 (1.7c)

for P, SV, and SH waves, respectively. (A , p are elastic constants,

p density, et I ESV , Cp , K1  functions of the density, elastic

constants, and their first and second order radial derivatives, and

U = (Ur , U , U ) is the vector displacement.)

A separation of variables-allows the angular dependence of P , V

and H to be satisfied by vector surface harmonics that can be factored

out of Eqs. 1.7a-1.7c, resulting in the scalar radial equations

2 Klr r 2 frB Y 1d2X +W2 2 Xl + _ d2C/r) BaY + ()(.a

dr2 1-2 dr2 r2ar +
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2 K -D (X/r) Y + 0(
2d2 SVY 2 Dr r -r J21.b

dr PW r

d2
+Z 2

2r 2 2 + t Z (1.8c)

where Ql (.2L....2r2) 1/2

=I (!2 /2 12

B = 22

for a P velocity function a ,S velocity function 0 and ray

parameter p .The functions X ,Y *and Z divided by r are the radial

eigenfunctions of the full potentials P ,V *and H ,respectively.

First-Order Solutions

Within a constant of proportionality to be determined by a

normalization criterion, Langer's (1951) uniform approximation to the

solutions X , Y , and Z can be expressed at the lowest order in frequency

as (Richards, 1976)

(1)

1/ (2)
- (&2/Q) 1/ 1/3 (WE2)/Wjp (1.9b)

(1)

(E 2/ 2  1/2 H () W (1.90)

where 1/32 is a spherical Hankel function of order 1/3 and kind (1) for
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an upgoing or (2) for a down going wave and 1 are defined by1,2

r

i= idr (1.10)

-6 .rp

In order that the coupled equations for P and V (X and Y) be dimensionally

correct, the factor wp (constant in r) must appear as shown in the

solution for Y

To first order in frequency the P and SV potentials are decoupled

and the properties of the first and higher order radial derivatives of

elastic moduli and density given by the factors ep ,and CT do

not appear in the solution. The solutions given above, however, do

correctly account to first order for the effects of radial inhomogeneity

near the turning point of a ray. These solutions are valid for body

KW waves of frequency 0.01 Hz or more except in regions of severe velocity

and/or density gradient in the upper mantle low velocity and transition

zones.

Higher Order Solutions

Higher order uniform approximations may be determined from a

perturbation solution for the functions A(r,w) and B(r,w) in

V = A(r,w)u + B(r,w)u' (1.11)

where V symbolizes X , Y , or Z and u symbolizes a first order solution

given by Eq. 1.9a, b, or c. Earlier studies (Cherry, 1950; Olver, 1974;

Chapman, 1976) work with the Langer transformation of Eqs. l.Sa-c which
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for a particular radial function V is of the form

2

v938'2  I off$ 2 3223

where wg(z,w) = + 3012 2 , z O 0(r) - (3/2 3

V- 6' 1/2V ),
and V - ' -

A perturbation solution seeks the evaluation of the functions A(r,W) and

B(r,w) in

2/3 2/3
V = A(zw) bi(w z) + B(z,w) bi( ) (1.13)

where bi denotes an Airy function of the first or second kind and (')

a derivative with respect to z . It should be noted that the solution

given by Eq. 1.13 is equivalent to that given by Eq. 1.11 after

back-transforming V to V and expressing bi in terms of Hankel functions

of order 1/3

The evaluation of the functions A and B involve integrals over the

variable z of integrands containing the function wg(z,w) . Numerical

integration over z in seismic applications requires that simple functions of

radius in wg(z,w) such as e be determined as complicated functions

of z . If the variable of integration were changed from z to r , functions

such as e could be easily evaluated, but the functions 6', 0" , and

' resulting from the Langer transformation would be time

consuming to evaluate as functions of r . Thus the alternative solution

form given by Eq. 1.11 will be sought because the integrals needed to

determine the coefficients of A(r,w) and B(r,w) in power series of
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of frequency w are integrals over radius of simple functions of radius.

In seeking such a solution, let

X = A(r,w)x + B(r,w)x' (l.14a)

Y = X(r,w)y + B(r,w)y' (1.14b)

Z = C(r,w)y + D(r,w)y' (1.14c)

where

X = (IQ1) I1 H l/(WE1  (1.15a)

y = (&2/Q2)
1 2 Hi1 3 (WE2)/Wp (1.15b)

( H 3 (wE 2) (1.15c)

A(r,w) + W -2nA (r) (1.16a)
n

n 0

° O

B(r,w) -2Bn(r) (1.16b)

nnmO

and similarly for A , B , C , and D . For example, in ascending negative

powers of frequency the first three terms in the solution for Z would be

D(221 / 2 Sj3o )
D & oH (W(

Z Cl (2/Q 2)
1 /2  i (WE + 1 ) 2Q2) 2 22

0 1/32) W

~1[~fQ)1/2 -1 2 / 2
1 /2 ( Q 2+ )C /Q +2QH

Q2

(1.17)

4- .
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To determine the coefficients A , B , etc., the solution forms of

Eqs. 1.14a-c are substituted in the radial Eqs. 1.9a-c and terms in equal

powers of frequency are equated.

The results for the zeroth and first higher order term for P , SV ,

and SH are as follows:

1/2j
L1Ip(F4 /Q1 ) / 2 /3 (WE

X - L (E1 /Q) 1 / 2 Hi (WE1) + 2 + 1 2 1 (1.18a)

Y T /Q 1/2 Hi WE + 2SV Q H22/ 3 (wF2) + . (1.18b)( ¥ = L (22) 2 1'~/3 (w2) 2w

1/2j
1/2 1 LIsH( 2/Q 2) H213(w 2)

Z L1( /Q2) H1 /3(A 2  + 2w +... (1.18c)

where L and L are normalization constants for up- (J=l) or down-

(J=2) going waves. The functions Ip , ISv , ISH are defined by

rK/P(Q 2 + Ujk )]dr[p - 1 1 IpQ +  PS
Ip 1 Q (1.19a)

rprP1

SV SV- Y2+ K1 /P(p 2 /r 2 + )]drISV 1 (1.19b)
f Q2

rP2

If (Et - y2 ) dr

S J ,2(1. 19c)

2 2
1 d Qi 3 (49 + Qiwhere y 2Q dr 2  4Q r2 (__ 364

and the coupling coefficients ik , oik by
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Xk ) 1/2 k

Ojk 2/ 2k(22" 2
PS Aj r / H 1l/3 (WEI

and

A QQHk (WOjk k (E_2_ 2 2/3( 1)
SP =2 r H/ 3 (W 2)

The coupling coefficients as they appear in the second order term for P and

SV waves represent singly converted waves that ususally arrive at times

and distances removed from those of a wave directly transmitted through a

region of anomalously large gradient when the region is much deeper than

either the source or receiver.

To accurately calculate the third order term for the P and SV

potential solutions, the corrections O(X/w) and O(Y/w 2) noted in

Eqs. 7a-b must be found. The results of calculating the next higher
2 7, 2 Tu

order term for SH indicate that this term is of order Is H ThusW-R
we may predict that the third order terms for P and SV are of order
22 2 2
I2X/ 2  and Isvy w . The third order P and SV terms will also involve
P s
coupling coefficients appearing in double integrals of the form

kg(r) a f(r') Jk dr' dr

rp r
SP

Physically these double integrals involving coupling coefficients represent

waves that travel essentially as converted waves in regions of intense

gradient, converting back to the original wave type after leaving

the region on their way towards the receiver.

L- -
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Displacement

The higher order terms in the Langer approximation

may be applied to determining the reflection-transmission coefficients

of elastic waves incident on a radial discontinuity of first, second,

or third order in elastic moduli or density. Thus fewer but more

complicated factors need to be evaluated in the determination of the

factor f in Eq. 1.1.

Let us now instead consider the problem of wave propagation in a

hypothetical medium in which the elastic moduli and density are everywhere

analytic in depth but exhibit intense gradients in certain depth ranges.

Although elastic moduli and density and their first and higher order

derivatives may rapidly change in certain zones in the earth, let us

assume that they nevertheless change continuously. The advantages given

by this assumption are (1) that the representation for potential or

displacement at the surface as an integral over ray parameter does not

require reflection-transmission coefficients to appear in the integrand,

and (2) that the WKBJ approximation to the radial eigenfunctions may be

substituted because these functions need only to be evaluated at the

source and receiver radius far from a turning point.

Using the equations relating displacement U and potential

i 0,0l/2 O n for SH waves and (L20)

p 0 (0
I l grad f/ r + curl curl 0 0fP1/2 r7 f 2 712 r

K u K o (1. 21)
0 - (Ur 0 ,0) +K2U(21

PW '2

eO
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for P and SV waves, a representation for the Fourier-transformed

displacement as an integral over ray parameter may be obtained as outlined

by Richards (1973). Including now the first higher order term in the

potentials results in a displacement representation for a source at the

receiver radius ard a ray departing downwards from the source:

f ' eiir/2
Ur(r1,) = /2 1 P1 2 (1 + , et (rp) dp (1.22a)

U 2( +rA wi/Iv IiJrP + (12h
r

Ue(r,A) - w 1/2 L SV}p/2 (1 + e i / e Trp dp (1,22b)

rr
uqo(r,A) = w /2 L SH p1 a/ S)eiYr') (1.22c)

when only the radial displacement U of a P wave and horizontal

displacement U0  of a SV wave is calculated. The constants L , LSV

LSH are proportional to the source normalization factor and seismic

moment. The phase factor J is calculated in the P velocity profile and

J in the S velocity profile. Note that the ff/2 phase shift of the

higher order term in the integrand may be interpreted as the phase shift

expected of reversed travel time branches generated by regions of intense

gradient.

Summary and Conclusions

A higher order Langer approximation has been developed for the radial

eigenfunction of the second order wave equations satisfied by P and S

potentials. The higher order approximation allows a more exact solution

to the elastic wave equations in regions of strong gradient of velocity

and density, remains valid for a turning point in such regions, and
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minimizes the number of radially inhomogeneous layers required to describe

an earth model. Coefficients in the perturbation series solution are

expressed as integrals of funct:ons of velocity, density, and their

radial derivatives over the depth coordinate rather than over the Langer

transformed coordinate. The coefficients can be inexpensively evaluated

to third order in frequency for SH and to second order for P and SV waves.

The second order term in the approximation for P and SV waves includes

the effect of single P-SV scattering by regions of strong gradient. When

such regions are sufficiently far from the source and receiver, these

scattered waves arrive either at distances far from the receiver or at

times removed from the arrival time of the transmitted wave. Thus they

may represent an important source of non-intrinsic attenuation for low

frequency P and SV waves in the upper mantle.

Test calculations are now in progress using the displacement

representation given by Eqs. 1.22a-c in simple models of upper mantle

transition zones. Comparisons of seismograms calculated using this

representation for waves interacting with a thin zone of rapidly increasing

velocity and density will be made with seismograms interacting with a

discontinuous velocity increase at the same depth. These comparisons and

* calculations will be used to clarify how, if at all, the representation

given by Eqs. 1.22a-c may account for narrow as well as wide angle

reflections from transition zones.
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2. THE FREQUENCY DEPENDENCE OF Q

Gary M. Lundquist

K. Introduction.

Energy abopinin the Earth is generally measured in trsof the

seismic quality factor, Q ,which is defined as the fraction of energy

dissipated per wavelength: Q 1ic Qi is defined on a per

* cycle basis, then a constant Q implies increasing attenuation with

frequency for a given length of path. In particular, anelastic attenuation

*is low at low frequencies (f < 0.1 Hz) , amounting to a few percent at most

*over teleseismic path lengths. Happing Q as a function of frequency at

* those wavelengths requires a method with high resolution. On the other hand,

anelastic attenuation for f > 1 Hz may reduce wave amplitudes by several

orders of magnitude, so that a low resolution technique may be used to

observe Q- (f)

The functional dependency of Q on frequency has been the subject of

many recent papers with two basically different thrusts. The first group

presents observational evidence on Q1 and concludes that Q1 is independent

* of frequency over the period range from about I hour to 1 sec. This literature

* has been concisely reviewed by Anderson and Hart (1977), and includes data

from free oscillations, surface waves, and body waves with emphasis on
4 ~ multiple ScS paths. Most of the accurate determinations of Q1 structure

-1or average Q over teleseismic paths are done for waves with periods greater

* than 5 sec, which is also a period range of small attenuation and therefore

low resolution.

A second class of papers has examined the physical dissipation mechanisms

which could be responsible for anelastic attenuation. These papers were
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thoroughly reviewed by Jackson and Anderson (1970), who find a marked frequency

dependence for Q associated with each individual mechanism. One of the more

likely mechanisms for anelastic attenuation is grain-boundary relaxation

(Solomon, 1971; Anderson and Hart, 1977), which may be modelled as a relaxation

process in a standard linear elastic solid (Mason, 1958). This mdel predicts

-1 -1Q7 to behave as w for low frequencies and as W for high frequencies

relative to the "relaxation frequency" at which absorption is a maximum. Of

course, grain sizes, existence and viscosity of melt phases, and varying activation

energies will lead to a range of relaxation times and therefore, a page of

absorption peaks, yielding a weaker frequency dependence than would be expected

from a single mechanism.

Liu et al. (1976) chose a specific distribution of relaxation times in

a standard linear elastic solid which gave them a frequency independent

Q1 over a frequency band wider than the band of observation. Their model

may be visualized as an absorption spectrum with a finite bandwidth and

-1
w and w decays at lower and higher frequencies respectively. The existence

of a low frequency cutoff is required for such a model, or the real part of

the index of refraction would be unbounded at zero frequency (Futterman, 1962),

but the position of the cutoff is not determined either by Futterman's theory

or by Liu et al. In the absence of evidence to the contrary, the low

frequency cutoff was placed beyond the range of observation at 10 -4Hz.

Again, no presently available technique has sufficient resolution to resolve

the existence of this cutoff, much less its position in frequency.

Anderson and Hart (1977) estimate the total bandwidth of the absorption

spectrum by using other theories to estimate the total velocity dispersion,

*which is a required consequence of any constant Q_ model (Newlands, 1954).

That is, if the difference in phase velocity at the low and high frequency

L
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cutoffs can be independently estimated, then the bandwidth is predicted by

the model of Liu et al. Anderson and Hart estimate a 15 to 20Z change in

velocity, which corresponds under certain assumptions, to a bandwidth of

3-6 decades. If the low frequency cutoff is at 10- Hz, then five decades

gives a high frequency cutoff at 10 Hz, which is used by Liu et al. (1976).

A high frequency cutoff is required by causality (Lamb, 1962) but is not

uniquely determined either by causality or by Anderson and Hart. The object

of this report is to present evidence for a high frequency cutoff within the

paseband of WUSSN seismographs.

The present study of anelastic attenuation arose out of a study of

*0 body-wave seismic source spectra. The standard correction for the Earth's

attenuation filter is (Ben Menshem et al., 1966)

G(x)exp(nrf T/QE) m G(x)exp(nft*)

where G(x) is the frequency independent geometric attenuation. Evaluation of

the travel time, T , and the average or "effective" Q-1 , requires both

* elastic and anelastic Earth models. Seismic velocities are well constrained,
.':1

but Q models are still in a state of flux.

Of the models available, two California Institute of Technology Q-1

models were tested on spectra from several central Asian crustal earthquakes.

CIT 208 was derived from short-period body waves (Julian, personal comminication),

and for shallow events could be represented by a distance independent

t*- 0.42 . CIT 11 CS2 - QM , on the other hand, was determined from

surface wave data (Anderson, 1967) and could be represented by t - 1.0

Of course there is no explicit frequency dependence in either model.



28

The discrepancy in t could be interpretted either as an error in one

* Q-l
model or as evidence that t (or Q ) is frequency dependent. The first

model gave intuitively acceptable corrections to the body wave spectra; while

the second model so overcorrected the high frequencies that spectral content

at the peak of the short-period WWSSN seismometer response would have to be

discarded as noise (see Figure 2.3). Though the first model gave usable

spectra, the published literature (Carpenter and Flynn, 1965; Langsten and

Helmberger, 1975) suggested the second model was more correct.

The conflict was resolved by assuming that Q decayed toward high

frequency according to a standard-linear-elastic-solid model. By assuming

spectral shape, and in particular by requiring the high frequencies to decay

as (2 or ( , the position of the high frequency decay could be observed

for the raypaths tested. At this time it is not possible to determine

whether this decay is the high frequency cutoff postulated by Liu et al.

(1976), or simply a window in an otherwise constant absorption spectrum.

Theoretical Background.

The theory will be briefly reviewed to emphasize the necessary model

parameters. The energy of an harmonic wave may be written in terms of its

initial value, E (w) , and a spreading factor G(x) , as

= G E (W) 21(Kx - Wt) (2.1)

where K = K' + iK' is a complex wave number. Q-1 has already been defined

as the fraction of energy dissipated per wave length, X

Q-1 1 E(nX) - E((n + 1)X) (2.2)
27r E(n)2.
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If energy loss is small, then to first order the energy carried is given

by 2.1 and

-1 e-2K" /K'
Q - -

For small 1'' , the series expansion of the exponential gives

q-l 2K' '
K= (2.3)

That is, Q may be defined in terms of the ratio of the imaginary and real

parts of the wave number.

The distinction between P-wave and S-wave attenuation is obtained by

writing the respective wave numbers in terms of complex velocities.

K 2 2

ci 2 1/p(K + 4/3i)

2 22 w )

where K and U are complex bulk and shear moduli respectively. For the

case of small attenuation, the ratio of imaginary to real parts gives

-1 K'' + 4/3v''
Qa K' + 4/3p'

(2.4)

These definitions of Q-1 may be related to relaxation phenomena through the

standard linear elastic solid (Mason, 1958). The model may be visualized as a0'
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"
spring of stiffness, M in series with a parallel combination of dashpot

(viscosity n ) and spring (stiffness M2  ). At high frequencies, or

upon sudden application of stress, the system has an instantaneous elastic

response controlled by Ml , the unrelaxed system elastic modulus. At low

frequencies, or upon application of a constant stress, the system modulus

is that of the series springs

MlM2

The anelastic dashpot controls the frequency range over which the change in

modulus takes place, and therefore the frequency band over which absorption

takes place.

The stress strain relation for a linear elastic solid is (Liu et al.,

1976)

0 + ye + T ) (2.5)

where o n(Ml + M2) is the stress relaxation time for constant strain,

and T. =/M is the strain relaxation time for constant stress. For a2a

harmonic wave, a = jw and C - JwE so that

a(' + JwT0 ) =MR e(l + jWT) (2.6)

Thus the complex modulus is
0

C (2.7)

M

CF
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Finally, Q- is the ratio of imaginary part to real part.

Q-1 C(M, M2 ) [I +w2T2] (2.8)

where T AT a T is the average system relaxation time, and where C(H , M2)

is a constant depending upon the elastic moduli of the system. In 2.7, all

of the frequency dependent behavior is isolated inside the square brackets.

That factor, which shall be referred to as R1 (w) is a peaked function with
-1

and w behavior at low and high frequencies, respectively.

These results were extended to a spectrum of relaxations by Liu et al.

(1976). They assumed a linear relation between T and T of the form

I - T a/T M C<<l where C is a constant. Then, the distribution, say of

T completely specifies the behavior of the medium. Liu et al. chose the

nr distribution function to be

D( (/TC , > TC > T 2 (29D (TE) - TE 2 (2.9)

, > T 1 ; T < T2

where T and T were placed outside the frequency band of observation.

When these assumptions weie put into the Boltzman aftereffect equation and
integrated, Q- was found to have the form

Q71 "C an-1 W(T x)1 2 Tl 2(.0
+ T I 2(2.10)

4.
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Again, C is a constant, and the frequency dependence has been isolated in tnc

square brackets. This function, which shall be referred to as R (w) , also2

has w and w-1 behaviors, but about a constant Q-1 between T1  and T

The Model.

The estimation of high-frequency body-wave spectra is critically dependent

upon the anelastic attenuation model. In this section, a modulation technique

will be developed which superimposes a frequency dependence upon an otherwise

frequency independent Q-1 model.

From equations 2.1 and 2.3, the amplitude of a propagating stress wave

in a viscoelastic medium damps according to

e-K 1x i(K'x - Wt) -2Qe ei(K'x - Wt) (2.11)Ae e =Ae e
o 0

where A is an initial value, x is distance along the raypath and c is
0

the phase velocity. Since Q-1 is a per cycle characterization of absorption,

it is convenient to integrate the attenuation over the raypath (Carpenter,

1967)

exp(~fQ) = exp( T (2.12)

The numerical integration requires a velocity model to obtain the travel time,

T , and a Q model to obtain the effective or average Q- Q_

EEThe ratio T/Q E will be noted as t *in the following discussion with

subscript a or 0 for P or S-wave values, respectively.

Uo

6 b . .
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The modulation proposed here will be applied to the attenuation exponent

in 2.6. Three simple assumptions were made: (a) t is a constant as a

function of epicentral distance and may be represented by t = 1.0 and

t =4.0 for crustal earthquakes. (b) The base t are functions of depth

only. This is equivalent to assuming radially symmetric elastic and anelastic

Earth models. (c) The frequency dependence of Q , should one be discovered,

has a multiplicative separability from the depth dependence. That is,

t (z, f) = t z) R 2(f) (2.13)

where z is hypocentral depth. This last assumption preserves the simplicity

of the anelastic attenuation correction represented by equation 2.12. Other-

wise a separate correction would have to be computed for each frequency at

each distance. The modulation, R 2(f) ,will be taken from equation 2.10.

ruThe modulation, R 1(f) ,defined by 2.8 has been tested but was not

as successful as R 2(f) . R 2(f) models only a single peak. If the right-

hand side of the function is used to model the decay from a spectrum of peaks

the decay is too fast for any reasonable distribution of relaxation times.

Thereatie ize o Qa nd Q may be derived from equation 2.4

and Poisson's ratio, a .Note that both P and S waves are attenuated by

4 shear loss mechanisms (n'#0) , but P-waves suffer additional attenuation

from bulk losses whenever k"' 0 0 . Bulk losses are generally neglected

(Anderson and Hart, 1977), and setting k"' 0 in 2.4 gives
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3 (2 (2.14)
-1 4

For a Poisson condition, a = 0.25 and Q /Q01 2.25

The relative sizes of ta and t depend again upon Poisson's ratio.

If a is assumed constant along the raypath and k'' = 0 , then P and S

waves follow exactly the same path (Carpenter, 1965) so that aTa = OTB

and

tO 3a 3

= (2.15)
•4 3

For mantle velocities, t /t 4.16 4.84" t81

An important feature of t/t is that this ratio of ratios cannot

increase as a function of frequency. If all losses are in shear, then

t /ta  is a constant because , Q1 Ta and T all change in constant

proportion. If a bulk loss operates over some frequency range, then t

can only increase, because Q increases much faster than the slight decrease

aa6 in Ta due to body-wave dispersion.

Q-l *
The absolute values of Q and t are more difficult to determine.

*
The basic model analysis reported in this paper used t = 1.0 , following

Carpenter and Flynn (1965) and t = 4.0 (Helmberger, 1973). The recent

Q models of Anderson and Hart (1977) support a distance independent

t = 1.0 , but suggest tB > 4.0 with a more distinct dependence on distance.

t/t = 4.0 will be understood as a minimum value for that ratio.
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Figure 2.1 shows the modulation of the total anelastic attenuation correction

according to the distribution proposed by Liu et al. (1976) 17 equations 2.9

and 2.10. The curves marked "unmodulated" give the correction defined by

equation 2.12 for a frequency independent t (i.e., frequency independent

Q-'). The other curves result from modulation by R2 (w) (equation 2.10)

where T, = 2000 sec, and T1  is as labelled.

t will depend upon hypocentral dept', since earthquakes may occur

below most of the highly attenuating upper mantle. Many authors (Solomon,

1971; Anderson and Hart, 1977) point out that the anelastic attenuation is

dominated by the asthenosphere. An extreme case was suggested by HeImberger

(1973), who modelled a 50 km thick asthenosphere in which Q1 = 50 , surrounded

by a high Q (2000) mantle and crust. Burdick and HeImberger (1974) suggest

t = .55 and t = 2.2 for hypocentral depths of about 600 km. The new

-1
Q models of Anderson and Hart (1977) suggest a much smaller change,

amounting to only 30% at 600 km. For the deep earthquake reported in this

paper, t was set at 0.6, and tB = 2.4

The anelastic attenuation correction curves appropriate for hypocentral

depth of 600 km are shown .. i Figure 2.2, with the modulations by equation

2.10. The change in the relaxation parameter, T2  , will be a subject

I of the next section. For now, note that the reduction in predicted attenuation

reduces the resolution of the modulation technique modelled here.

The model proposed here arises out of physical considerations of absorption,

4 but it also meets a consideration of energy conservation. S .. ifically,

conservation of energy requires an amplitude spectrum to deca -- least as
-3/2

fast as W as W - . But the exponential corrections implied by the

4 unmodulated curves of Figures2.1 and 2.2 will raise the observed spectral

I
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* decay slopes by ever increasing amounts. That is, for the unmodulated curves

* to be appropriate, the uncorrected station spectra must decay at a rate faster

than exponential, and such a decay is not observed.

The modulation proposed will thus be interpreted and used as a decay

slope modification. A characteristic of each modulated curve is that an

inflection point exists beyond which the curve is concave down rather than

* concave up. In the limit of high frequency, each curve approaches a constant

as a function of frequency, suggesting that all frequencies in that range are

attenuated by the same amount. If a station spectrum with an original decay

of W - is to be interpreted according to Archambeau's (1964) relaxation

seismic-source model, for instance, then all of the frequencies in the decay

slope must be corrected equally. To obtain an w - decay slope on the same

*hypothetical spectrum, a slope change of W + must be given by the correction

function.

Though the expected decay slope for a given earthquake-station pair is

not known, the range of slopes predicted by seismic source theory is w -

-3
to W Each of those slopes will be sought as a function of the relaxation

parameter, T2 and the implications will be examined. That is, a spectral

*shape will be assumed, and Earth properties will be investigated under that

hypothesis.

Data.

Twelve central Asian crustal earthquakes and a deep earthquake in each

* of Fiji and Brazil have been tested in this study. Examples of the results

are given in Figures 2.3-2.5. Each spectrum presented is an average of eight

or more stations in the distance range 30-6Oo. The individual spectral were

estimated by the autocorrelation technique of Lundquist (1977). In each case,

S the uppermost spectra were corrected by a frequency independent model CIT 208,
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Figure 2.3: Body wave spectra for the event of 70-06-05. From top to bottom,
average station spectra were corrected for anelastic attenuation by
model CIT 208, CIT 11 CS2-QM with no modulation, CIT 11 CS2-QM
modulated to w- 2 decay rate and CIT 11 CS2-QM modulated to u-3

M decay rate.
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Figure 2.4: Body wave spectra for the event of 63-04-09. From top to bottom, the average

station spectra were corrected for anelastic attenuation by model CIT 208,
CIT IICS2-QM with no modulation, CITIICS2-QM modulated to W-2 decay rate and
CIT11CS2-QM modulated to 0r3 decay rate.
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Figure 2.5: Body wave spectra for the event of 72-03-30. From top to bottom, the average spectrL

were corrected for anelastic attenuation by model CIT 208, CITIICS2-QM with no
modulation, CITllCS2-QM modulated to W-

2 decay rate and CITllCS2-QM modulated to

* w 3 decay rate.
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while the second set of spectra were corrected with model CIT 11 CS2-QM.

The values of t are given on the figures and correspond to the discussion

of the last section. The last two sets of spectra in each figure were selected

for decay rate characteristics of W - or w -3by specifying a frequency

dependent t and adjusting T 2  * The results presented are also

caracteristic of the other earthquakes studied.

Table 2.1 lists several important parameters, both of the attenuation

correction and the resulting interpreted seismic source properties.

Discussion.

Several observations may be made from 2.3-2.5. First and most obvious

* are the problems with the standard corrections which nucleated this study.

Though CIT 208 provides an acceptable correction for the P-wave spectra,

neither of the standard models adequately accounts for the attenuation of high

frequency S waves. The deviation from a constant decay rate is not a noise

problem. Rather, the overcorrection results from the exponential correction

function overpowering the decay rate of the station spectra. Unless the

station spectrum decays faster than an exponential, the overcorrection must

occur at some frequency, whether noise is present or not.

As mentioned in the last section, any fall-off less rapid than W-/ violates

conservation of energy in the limit as w -~~.Though these figures demonstrate

*that an improvement may be achieved by adjusting the base t values, the

improvement persists only over a small frequency range. Some modulation is

required to reduce the exponential rate of increase in the correction function

* over all positive frequencies.

A very interesting result of this experiment is the fact that the P and

S wave spectra from shallow earthquakes need different modulations to achieve

6 the same decay slope. At first glance, one might attribute the difference to
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Table 2.1

Event T/Q Slope Relaxation Seismic Moment Corner Stress
Adjustment Parameter (1025 dyne-cm) Freq. (Hz) Drop (Bars)

P S T2p T2s P S P S P S

70-06-05 .42 1.68 none 10.0 3.2 .16 .08 6 1.3
Tien Shan
42.48N 1.0 4.0 none .08 .12 0.7 4.5
78.76E -2
h - 20 km 1.0 4.0 w -3 .08 .18 .17 .24 7 36

1.0 4.0 w .16 .26 .23 .25 17 41

63-04-19 .42 1.68 none 7.0 13.0 .20 .044 8 0.9
Tsaidam 1.0 4.0 none .095 .045 0.9 1.0
35.7N -2
96.9E 1.0 4.0 w .08 .18 .24 .09 14 8
h = 33 km -3

1.0 4.0 w .16 .26 .28 .12 22 18

72-03-30 0.25 1.0 none 69.0 40.0 .16 .18 30 133
Fiji 0.6 2.4 none .13 .22 15 242
25.75 -2

*179.4E 0.6 2.4 w .06 .10 .16 .22 30 242
= 532 km 3

0.6 2.4 w .16 .18 .23 .25 83 356

TABLE 1: A list of the events, anelastic attenuation model parameters and
interpreted seismic source parameters.
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the different t , but careful consideration shows that if both wave types

are attenuated by the same mechanisms, then the modulation must be the same.

Figures 2.6 and 2.7 show the t (f) for the two decay slopes tested,

and both figures support the same conclusions for shallow earthquakes: (a)

Either the high frequency cutoff or a window in the absorption spectrum may

be resolved for both P and S waves. (b) The P waves are attenuated to higher

frequencies than are S waves. Since both wave types suffer shear losses in

constant proportion, the additional attenuation of P waves must result from

a bulk loss.

This last possibility was discussed under the Theory section. The ratio

* t It* must either be constant as a function of frequency or decrease relative

to a frequency range over which the imaginary bulk modulus is zero. If

t /t decreases by a factor of 6 > 0 as a function of frequency, then

* equation 2.4 gives

k'' 4
Ii = (6-1) (2.16)

Under the assumptions of this model and the assumption that P and S spectra

should have the same decay slope, the only conclusion is that bulk-loss

mechanism operates over a narrow frequency band within the window in the 5-

* wave absorption spectrum.

The difference between modulations required for P and S-wave spectra

from deep earthquakes is not as great as the same difference for shallow

p earthquakes. This could result from either the low resolution, especially

of P-waves, or from the limited sample of deep earthquakes tested. But the

result may also be interpreted in terms of Earth properties. Suppose for

p a moment that the bulk loss mechanism operates only in the asthenosphere, while
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Figure 2 .6: Observed t* vs. frequency. The values of T 2 correspond to _
Figures 2 .3- 2.5 f or a high f requency spectral decay slope of w
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Figure 2.7: Observed t vs. frequency. The values of T2 correspond to Figures

*2.3-2.5 for a high frequency spectral decay slope of W3
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shear loss mechanism operate throughout the mantle. Then the change in path

from shallow focus to deep focus must affect the P and S-wave absorption

spectra differently.

In Figures 2.6 and 2.7, the P-wave absorption spectrum appears to be

reduced by a constant factor as through approximately half as much attenuation

were seen by the deep events as by the shallow. The reduction in the effective

amplitude of k"' would also reduce the difference between P and S-wave

absorption spectra, a result which is also observed in the figures.

The interpretation of the modulation change for S waves as a function of

hypocentral depth is not clear, and further study will be required before

this writer will forward an hypothesis. It is likely that the relaxation

frequencies operating in the asthenosphere are not exactly those operating

in the rest of the mantle. Though the modulation technique reported here, some

information may be obtained in the location of a window or high frequency

cutoff, but the simple characteristic of spectral decay does not give enough

resolution to permit detailed inversion for the spectrum of relaxation

* frequencies.

A bulk loss mechanism which might operate over seismic frequencies was

examined by Vaianys (1968). He argues that a medium composed of a solid in

equilibrium with its own melt may suffer additional phase change under

compressive stress. If the stress is harmonic, the amount of phase change

would vary with frequency, being peaked about W = l/T , where T is a

*characteristic rate of the phase change. Essentially, the medium would tend

4
to freeze during one half of the stress cycle, then thaw during the other

half cycle. Since more energy is required to order a lattice than to disorder

a lattice, the effect would be a slightly greater fraction of melt after the
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wave has passed. Since this mechanism requires pressure changes, it would

attenuate only P waves; and, since the mechanism requires a partial melt,

it would operate primarily in the asthenosphere.

The Vaisnys bulk loss mechanism was probably observed by Spetzler and

Anderson (1968). They observed attenuation as a function of temperature in

an ice-brine mixture and found a marked decrease in for temperatures

within 3% of melting temperature. The loss mechanism is definitely related to

the melting temperature, T m, since Q1in the near vicinity of T m

was lower than Q for either higher or lower temperatures.
aL

As a side note, the Brune model (1970) stress drops were calculated for

the various correction models tested, and the results are given in Table2.1.

* Stress drop calculated that way depends upon the cube of the observed corner

frequency, so small changes in f 0can be critical to the stress drop

* calculation. The table itself speaks eloquently of the importance of

determining the proper anelastic attenuation correction. Until such a criterion

is established, stress drop computed from body-wave spectra must be interpreted

in terms of the Q_1model used. In particular, comparisons of stress drops

calculated under different Q1 models are not valid.

Conclusions.

This study has investigated the frequency dependence of Q1 , or equivalently,

* of t* . Evidence for such a dependence was found by examining the correction

of body-wave spectra for anelastic attenuation. The model reported here was

designed to observe a high-frequency cutoff or a window in an otherwise constant

* absorption spectrum, and such a decay in attenuation toward high frequencies

was observed for both P and S waves. When the criterion for the body wave

spectra is an W 3decay, then the spectrum of relaxations controlled by
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modulus has a decay beginning about .2 Hz, while a separate dissipation

mechanism operating on the bulk modulus maintains P-wave attenuation out to

about .4 Hz. When the criterion is an ( 2 d' ay slope, then the same

conclusions apply, but the frequencies are about .35 and .7 Hz, respectively.

The change in the required model parameters as a function of depth de-

finitely suggest that the bulk loss mechanism is concentrated almost entirely

in the asthenosphere, while the losses in shear are distributed in a complex

manner throughout the mantle. Thus ta and t must have different behavior

as a function of depth over the critical range of requencies of the absorption

window.

Finally, the value of stress drop computed from body-wave spectra was

shown to be very dependent upon the Q model used to correct those spectra

for anelastic attenuation.

0
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3. SOURCE THEORY, STRESS ESTIMATION AND DISCRIMINATION

C.B. Archambeau, Carlos Salvado, and Jeff Stevens

Introduction.

*During the first half of the current contract period considerable

emphasis has been placed on the development of very general analytical and

numerical models of seismic sources. To achieve the required generality

* we have considered combined analytical and numerical methods. Specifically

we have considered Green's function representations of the field obtained by

numerical computation within a relatively small zone surrounding the (generally

nonlinear) source of seismic energy. This allows us to predict far field

radiation from three dimensional nonlinear sources (such as earthquakes or

complex explosions), whereas in the past the costs of numerical modeling

could be prohibitive.

A second area of research has been the study of observed

earthquakes using current (analytical) relaxation models of earthquakes. In

particular we have studied events in the Pacific region using m,- 5 data to

estimate the tectonic stress drops and failure zone dimensions. In this study

we hope not only to gain a better understanding of earthquake physics, but

* also to verify predictions of %b-M. behavior based on relaxation source theory

in order to establish the basis for event discrimination. Further this

approach delineates those regions producing "anomalous" (explosion-like)

earthquakes and provides a basis for the description and understanding of

such events.

The following section provides a brief description of some of the results

and conclusions obtained from the study of the %b-M. data for a large set of

events in the Pacific area. A final section describes, in some detail, the
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no,:eticaI approach used in the combined numerical-analytical modeling of

seiimic sources. Applications of this theory are in progress and will be

discussed in later reports. Current applied work has progressed to the point

where a specific source model will be generated in the near future (i.e.,

a three dimensional "ellipsoidal" earthquake in a non-homogeneous initial

stress field).

Seismically Inferred Nonhydrostatic Stresses in the Earth's Lithosphere.

The large seismic data base consisting of measured values of body and

surface wave magnitudes from world-side earthquakes, in the range mb from

4.5 to 6.5, has been used to infer tectonic stress drops for events in the

most active regions around the Pacific. The approach relies upon theoretical

predictions of mb and M. for strike-slip, normal, and thrust earthquakes at a

variety of depths, where the rupture velocity is assumed to be a fixed fraction

of the local shear velocity and the ratio of the rupture width to length is also

assumed to be a constant. The observed event data are classified as to type on

the basis of location relative to known tectonic features. The stress drop and

failure zone dimensions are then determined from the theoretical predictions for

events of the corresponding type in the appropriate depth range. We find that

the stress patterns inferred are highly variable spatially, with relatively

small zones of high stress near 1 kbar. The location of such stress concentrations

is usually within a seismic "gap" with regard to earthquakes much stronger than

those used in the analysis. Estimation of stress before and after relatively

large earthquakes shows that the large events initiate in the small zones of high

stress, with stress levels being much lower in this region after the large

event but usually with higher stress zones created near the limits of the

failure zone. Large events nearly always show stress drops around

100 bars, which is much lower than the level that appears to

-I' h m
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.eui~ed tot initiation. This can be interpreted to mean that large

evencs start within the high stress zones but that failure may be dynamically

driven into zones of much lower stress, sometimes also across these low

zones into other zones of high stress. This behavior results in a low

average stress drop and the appearance of a multiple event.

Green's Function Techniques for the Representation of Elastic Wave Fields.

Two patclrapplications of the Green's function representation in

elastodynamic theory to numerically generated wave fields are considered.

First, it is shown that the Green's function representation of a wave field

in the elastic zone outside of a nonlinear source region can be used to

generate an equivalent elastic source that analytically reproduces a field

identifical to the numerical field in the elastic region. This analytical

representation of the field can then be easily employed to predict the

radiation at large distances from the source. The approach therefore allows

truncation of the numerical computation after a short time and allows complex

linear-nonlinear problems to be attacked with much greater accuracy and

efficiency. The second application employs the Green's function representation

to effect a transparent boundary for the edge of a numerical grid. In this

case, an infinite space (or half space) Green's function representation is

used to predict the motion of the grid points on the boundary of the grid

based on the motion of the points on the surface defined by the nearestF interior grid points. This approach causes the grid boundary to transmit

the field without reflection of energy back into the interior of the grid

system and hence can greatly reduce the necessary grid size and improve

numerical accuracy. This approach can greatly enhance our ability to obtain

realistic representations of complex seismic sources wherein both nonlinear

and linear phenomena can be moxdeled in an arbitrary geometry.
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General Theory. We consider the general linear elastic

equation of motion*

jxk + pb i  (3.1)

where the stress tensor is given by

T. C e Ci) =ijkt ki =ijk Uk,1 ijkZ "(k,l)

where ek . U (kE } is the strain with u(kl) the symmetric

part of Uk, aUk/ax, and C is the elastic tensor withkr i kijkk
symmetry relations

Cijkk = Cjikl = Cijk = Cktij

Both p and the C.. may be functions of the spatial coordinates

but have been assumed independent of time.

We may define four vectors and four tensors which al-
low the equation of motion and boundary conditions for elas-
tic problems to be expressed in the compact general form:**

The general reference for much of this section is Archambeau
and Minster [1979], "Dynamics in Prestressed Media with Mov-
ing Boundaries: 'A Continuum Theory of Failure ( in pvass.
Geophys. J. R. A. S.).

In this discussion, Cartesian tensors were used throughout.
Further, Greek letters used as indices will always run over
the range 1, 2, 3, 4 while Latin letters will have the
range 1, 2, 3.
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L u =pf
ay Y 01

(3.2)

a, 0 and y take on the values 1, 2, 3, 4 and the first equa-

tion in 3.2 is the equation of motion while the second equa-

tion expresses the boundary conditions to be satisfied by

the field U on boundary surfaces Z. Here the standard
Y

bracket notation for the jump across a boundary is used,

i.e., for any function F defined on both sides E and Z of

a surface E, then 1FV E = F(E ) - F(E ) where F(E )means

F evaluated cn Z as approached from side 1 and similarly

for F(Z ).
2

Here the operator L in 3.2 is defined as
aa

where {x } is the four vector (x, x ' x , x ), with x the
81 2 3 4 .

time coordinate. Further C is the "elastic-inertia" ten-

sor defined by

C c a, B,y,6 = 1,2,3a8y6 -ijkt;

COO76 C14k4 ' C414k = P6ik;i,k = 1,2,3 (3A)

C8y6 = 0; otherwise

where Cay, has the same symmetry properties as did Cijk1,

that is:

.Cat8y CSay6 C a06y I Cy6a8 (3.5)

In addition U and f. are the "space-like" four vectors

defined as
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( u = (u , u , 0)

(3.6)

(f} = (b , b , b , 0)(X1 2 3

while n is a four vector normal (in space-time) with a-time

like component and is defined by {nB} = (n , n r n , w • n)
1 2 3 -

where w* is the boundary velocity vector relative to the
material particle velocity: w* = w - V. Finally, Ta is the

generalized inertial-stress tensor given by

au

which has the same formal structure as the ordinary stress
tensor Tij, but has the added feature of containing the

inertial forces as well.

An equivalent form for the equation of motion is,

from 3.2 and3.3.;

, Pf (3.8)

so that the equations of motion can be expressed as the

divergence of the symmetric four tensor T a. This allows
a Green's function representation for the displacement

field u to be obtained for the general case in which theY
4 boundaries of the medium may move with a velocity W which

is different than the particle velocity.

In the applications of the Green's function solution
to be discussed here, we will not be particularly concerned
with the cases in which a boundary or boundaries in the

medium move with some velocity other than the material

particle velocity. However, this feature of the formula-

tion has been used to describe failure boundary growth and

the associated radiation of elastic energy in a prestressed

medium by Archambeau and Minster [1977].
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In any case, Archambeau and Minster [1977J show that
1! Green's function solution of the system 3.2 is given by

t t
4G 7(x pf GU dx -ist " ive daf = G f J0

+ fr dj dvO (3.9)

f1

G T - G (3.10)B z ao at a

where

C -1.- (3.11).as OLOYS ax6

is the inertial-stress tensor associated with the Green's
tensornalus

Y
From the definition of J U and the associated func-

tions, we have that

k, ,m k(3. 12)

=4 0

where uk and Gm are Cartesian tensors in the ordinary three-

dimensional space.
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Further, the various limits of integration appearing

in (9) are over fl, the four-volume in which the time co-

ordinate x 3 t ranges over the interval (0, t + ) with

t= t + c, with c > 0 and infintesimal (which is used only

to avoid singular points of the Green's function which may

occur), while the spatial coordinates range over the ordi-

nary spatial volume v • Thus, a v denotes the spatial sur-1 1
face of V

1

If we rewrite the Green's integral solution 3.9, using

the original definitions of the various four tensors, we

can express (9) in terms of the ordinary spatial three ten-

sors as

t+

4 ru (x,t) = f t f(x t ,t )dv
M f eo - ;xo 

0 0

+k 0 t0 ) Cj X) __ Gi(x,t;x ,t + P_)1

-oX 'iokL- ax3  -o o P -- '- E dv

0

kt f 0 {UkX 0t) a 1 at dv

t 'Gm G M (x ,t;x 't ) a U k+ d - Gk _ , v

4 0 0 V 0j

(3.13)

This result is similar to the classical Green's function

solution except that terms involving WE, the velocity of the

boundary of V are present in the integral over av . These

terms are negligible when the boundary moves with the particle
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velocity, that is, when the boundary is an ordinary material

boundary, but can be large and comparable to the other terms

in the integral over 8V when the boundary is a phase transi-
I

tion boundary. In the applications of the present work we

will take all boundaries of V to be material boundaries and1
will neglect these terms. Archambeau and Minster [1976]

discuss the general problem.

The final term in 3.9 and 3.13 represents effects of

(generalized) "initial values" of the displacement and

velocity fields and the integral representing these effects

has been written as a Stieltjes integral since in general

it has this form when non-material boundaries are present.

Thus, in this respect 3.9 and 3.13 are different from the

classical representations, however, again it is not neces-

sary to use this general form for the applications here.

For the restricted applications of the present

discussion, this term reduces to the classical result which

accounts for the ordinary initial values of uk and aUk /at.

For application of 3.9, which has the explicit form

given in 3.13, we observe that the original field equations

governing u and G are:
a a

Lay uy Pf a

(3.14)

T aof01 = Ta8 n Ti

1 2

and

L G= A (x;x')ay y a ---
(3.15)

G IP

pw1
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-oth sets of equations apply to the four-volume Q. In this

case, using the boundary conditions that apply for the

fields u and G in 3.9 we have:
Y

t 
+

4nu (X) =fPfG0 dx-0 dt Ga T  n da4

t t

+ ( 3ll dv (.16)

1

This is a rather simple form in which all field quantities

on the right side are generally known since they appear in

integrals over the medium boundaries in either space or

time (i.e., the latter as initial values at t = 0 ordinarily).

When the body force field is negligible or entirely absent

and when the medium is in equilibrium initially, then only

the second integral over the boundary of V appears in1

3.16 and we see from the differential system in 3-4 that

the boundary condition provides the necessary specification

of x - n a on the surface av . (Here we have used E = aV

to denote the boundary of v approached from inside v while
1 1

E is the boundary approached from outside V .) In particu-2 1

lar, T 11 on Dv takes on the value T n which corres-

ponds to the "generalized traction" applied 'ex1-rnally to

the boundary of V . If we neglect the boundary motion rela-1
tive to other effects as described earlier, then T ,n B re-
duces to the negative of the ordinary tractions, tk E TtknL

on V

We see from 3.15, however, that we must obtain the

Green's function satisfying homogeneous boundary conditions

on the boundaries of 0 in order that 3.9 reduce to the

simple form 3.16. Often this is difficult and sometimes, of

I
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course, impossible for complicated problems. In this circum-

stance,- we would want to use an approximate procedure in-

volving some Green's function that we can obtain or is known

and that is close to that required for a solution. Thus,

for general applications for which the system 3.15 may not

be soluble in any practical sense we would want to consider

a Green's function given by a system of equations which

are "close to" 3.15, but which are soluble. There are in

fact several approximate procedures that can be followed.

One approach is to simply replace the region 9 over which

the operator is defined by a new region Q', which may not

contain all the boundaries of Q but is larger in the sense

that all space-time points of a are contained in 1 . Thus,

we can introduce a new region aT' which is such that within

this new problem space the equations of 3.15 can be solved

for the Green's function. We shall denote these Green's

functions by r8 (x,x ) in 3.9 where 3.9 is still defined

over P. rather than 2' . Since the Green's function

4 are still defined on Q then 3.9 has meaning

when r is used in place of G However, 3.9 will become

an integral equation rather than a solution like 3.16, and

while ra will be known and usually in a relatively simple form,Y
it will now be necessary to solve an integral equation for the

unknown field uP (x), by iteration methods for example.

Specifically, we define the class of approximating

Green's functions ro byY

L (x,x ) - (x,x ); x2'ay y ---o a ---- - (3.17)

Y 11 (x,x ) n = 0; (317)

a -o0
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where

Y (x; x ) a (x) __x (3Y
~iB ' ~ZB6 - x6

is the inertial-stress tensor associated with ru. We assumeY
that A' contains 0 but that at least some of the boundaries

of Q are not present in 0' (e.g., W could be an infinite

space, so that the boundary condition in 3.17 would be

satisfied at infinity and 9 would be contained in 2',

but r would not account for any of the boundaries of 9).
Y
Now, using 3.9 with r Bgives for u (x) in Q:

Y -
t +

4u () u W pfr" d~x - dt. f ruIT.,n da'

+ 1 f Ua Yc&8 da

a0 eav

1 

+

t 
+

where 3V OWv is the set theoretic difference in the spatial

boundary of vI and V ".Here v is the purely spatial part

of Q while v' is the purely spatial part of W'. Clearly, the
third term vanishes if the boundaries of n2 coincide with

those of A. Here we have taken the temporal parts of 2 and

W' to coincide, so that the time interval for both problems

is taken to be (0, c), or in effect (0, t+) due to the causal properties

of the Green's functions.
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We observe that since W' and il do not coincide by

definition, then the third term in 3.i9, which involves the

displacement field u on 3 vO0v' , is normally nonzero. If
2 1 1

the choice of Q' is a good one, in terms of an approximation

to the solution for u (x) using the proper Green's function,

then this term in 3.19 will be small or of no importance

in the problem to be solved.

A good approach to the solution of 3.19 when 91 has

been chosen to make the third term relatively small is to

take the first iterate to the solution to be the sum of the

three other terms in 3.19, which can be computed directly.

Thus, we take

t+

47ru I (x) = f Pfar d'x° - J dt I r U 8n8j da°

10 3v

t 
+

+f d Jd VOj (3.20)

1

As the first approximation to u (x); the second approximation

is then given by

t t+

4(Ix) - u I x)) = fdt uT(X) [y(x;x0) n,] d a
UP ~ ~ 110 f V1 a 0

1 1

0 (3 .21)

-
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with higher order terms given similarly.

These results are essentially the only formal struc-

ture that is required to generate representations of the

field which will be useful in a number of applications.

Some particular relations which amount to alternate expres-

sions of the same representations are, however, useful.

The first of these is the expression of the Green's

function representations for u P (x) in the frequency domain.

By taking temporal Fourier transforms of the previous re-

sults, we have; using 3.19 which becomes the exact solution

given in 3.16 when W' = 0 and is the appropriate approxi-

mation for some choice of Q

47rum (x, ) = Pf krk dv 0  f rk T ki n£1 da

V3v 1v

f ntl da' (3.22)

3v eav'I I

where w( have neglected the initial value term involving JV

since in the following applications we will consider only

cases in which the initial condition is an equilibrium condi-

tion and where all boundaries are material boundaries.*

Further, since we have taken all boundaries to be material

boundaries, then all tensors are three tensors and the normal

n£ is the ordinary spatial normal on 3V . The notation u m

denotes a Fourier transformed field quantity where:

Archambeau [1968] gives results for the case in which the
initial value term is included, with an application desig-
nated to describe failure phenomena.
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U(xW) f_ U_(xt)I dt (3.23)

Here also fk is the transform of the two point tensor and

is a function of the spatial coordinates x and x alone,-o
while depending parametrically on w (i.e., the source time

t is not present). Examples of these Green's functions in0
transformed form will be given in a later section along with

their time domain expression. Finally, T k and are the

negatives of the ordinary stress tensors associated with the

fields Uk and rk, respectively.

In addition to the direct expression of the displace-

ment field in terms of the Green's function integral as in

3.19 and 3.22, it is often useful to generate the displace-

ment field from potential fields that satisfy simplier dif-

ferenetial equations. This can often simplify the analyti-

cal problem since we can use the much simplier Green's func-

tions for tl-e potentials in an integral Green's function

relation that gives the potentials everywhere in terms of

their boundary values and then obtain the displacement fields,

stress fields, etc. for the entire region using the dif-

ferential relation between the displacement field and the

potentials.

Specifically, we may define potentials X al a 1, 2,

3, 4 such that [Archambeau; 1968, 1972]:

a2u [ am
-kta t -kVxj + (3.24)
at' Xk s [kC

where the four X are the three components of the rotation

(a = 1, 2, 3) and the dilatation (a = 4) so that:
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kmax9  auX9Xk 2 Y k Im a x, -- a32

with £kZm the alternating tensor. Equation 3.24 is just the

equation of motion for the medium under the conditions of

isotropy and homogeneity. That is, it corresponds to Eq.

3.1 when we take the elastic tensor, Cijk£, to be

Cijk = X6ij 6Lk + (6 it 6jk + 6ik 6j9,) (3.26)

with X, V and p in 3.1 to be constants. In many applica-

tions this is an adequate (local) representation for the

medium.

Using 3.24, it is easy to show that the individual

potentials satisfy wave equations by taking, successively

the curl and divergence of this equation. We have, there-

fore, that:

v2
V2 X a 2 3 = -4 q (3.27)

v 2 at 2
a

where

V (v s v s , v s ,  v)

af

q L ; k / 1,2,3

1 m
v2 axm
p

'IP

I



68

If we consider temporal Fourier transformed fields, then we

have

2 axm 1
U~ + kC m fk (3.28)k' •- ks

p s

in place of 3.24 and

V2- +k = (3.29)aO a Xa = a

in place of 3.27 , where:

XO f Xa (x,t) I dt (3.30)

and k -w/v (k, k, k, k).
O S S S p

Thus, we see that each of the four potentials satis-.

fied an equation of the same form, namely a scalar-: wave

equation, and that if we solve for the Xa then we can
construct the acceleration, velocity, displacement and stress

fields from them. Naturally, the boundary conditions on the

Xa are just those given for example in 3.2 and must, of
course, be taken into account.

Now the Green's function integral representations for
the Xa are quite simple and in addition, the scaler Green's

functions, which satisfy differential equation of the form

V2G(rt;r ,t 1 D - G(rt;r t
__ - * (t r ,o )

= - 4w6(r - r ) 6 (t - t ) (3.31)
0 0



69

is also relatively simple compared to the tensor Green's

function associated with um-

In particular, the Green's function integral giving

any of the potentials Xa is [e.g., Morse and Feshbach, 1953].

t+  t+

4wX(r,t) = dt G q dv0 +J dt, f (GVX - XVG} • n daO (3.32)
1 1

where we have suppressed the index a denoting the individual

potentials since they all have solutions of identical formal

structure, with v, G, X and q having the appropriate index

depending on which X is represented. where all initial value terms
for the potentials X. have been taken to be-iero. Results applying when

initial values are to be accounted for or when moving boundaries are

involved are given, for example, by Minster, 1973.

Analogously with 3.22, we have the representation in

the frequency domain

4wrR(r,w) f pqG dV + f ~GVO - RV G J * n daO (3.33)

where the initial value terms are again taken to be zero in

this result, as was done for 3.32..

In both 3.33 and 3.33, we have not introduced any

special notation for approximating scaler Green's functions

* corresponding to the earlier use of r as an approximating

Green's function, since in defining G and generating the



70

integral solutions we have not made explicit use of the

boundary conditions f or X and G on 3V Hence, we can

think of the G appearing in these results as being defined

on some region IVfl, where n.' may be identical with fl as a

special case. In general, as with the previous results in-

volving um directly, 0' will not be the same as S2. And the

Green's function in 3.32 and 3.33 will be an approximating

* Green's function. Consequently, the solution of the result-

ing integral equations for the Xawould preceed in the same

manner as was indicated earlier for urn where we used an

iterative approach.
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Eigenfunction Expansions: Multipole Field Representations of
Source Radiation Fields. As a first application of the Green's
function representations of the previous section, consider the case in

K which the dynamic field from a localized energy source has
been computed by a purely numerical procedure, or is known
by some other means. For example, suppose we compute the
motion of the medium due to a large explosion, with the
region in the immediate vicinity of the explosion behaving
nonlinearly in response to the high amplitude shock wave.
At some distance from the source the stress wave will,
however, decay to the point where the medium behaves linear-
ly. At this point the wave field will obey the linearized
equations of motion (1). Thus we may view the subsequent
response of the medium in the linear region V , exterior to1
this nonlinear zone, as being a consequence of impressed
field values (e.g., tractions) on the boundary of V as

Iindicated in Figure 3.1(i.e., essentially this is just the
Cauchy stress principle). In fact, we need not be concerned
with what occurs in the region V (Figure 3.1)but only with

2
the values of the field on the boundary 3V

Now if we wish to represent the field propagating into
V due to the impressed field on the boundary 3v , then we1 1
may use the Green's function solutions given in Section I
directly. In particular, we can assume that the initial
values of the field in v are zero, that there are no ex-
ternal time varying body forces, and that we do not have any
complications involving moving boundaries having rates dif-
ferent from the particle velocities. Then we have for the
displacement field in V

t

4 r (x,t) = dt r (Tkk)

0 0 av1

I- t(Yknk da (3.34)

q
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X3 VI

|X1

Figure 3.1: Schematic of the elastic region VI  where field values are

known on the boundary aVi V amy be a linear elastic
or nonlinear zone, but 3aI musi be within the elastic zone.

:q1
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Here T Rnk n tI are the tractions and u the displacements

on 3v , which are assumed specified for example, by the1

numerical calculation in V and given over the time inter-
val in which they are non-zero. Now we may use the infinite

space Green's function I in 3.34 to calculate M(X, t) in
V£

Ifa in particular,, we expand the Green's function e.

and the traction y nk derived from it in terms of vector

spherical wave functions, then um(k,t) can be expressed as

an expansion in terms of these functions. In this case

Um(xt) will be expressed in terms of a vector multipole

expansion about some origin point which can be taken arbi-

trarily. If we choose the origin at a point within V
2

corresponding to a natural symmetry point for the source of

the radiation field we can consider this resulting expanded

wave field as an equivalent point source which gives the

same radiation field in v as does the process occurring1
in v . (it does not, of course, give the actual radiation

field within V itself, but simply gives the analytically

continued field from V into V
1 2

The expansion of the Green's tensor in terms of

eigenfunctions can be accomplished in one, two or three

dimensions for the medium with boundaries, so that the region

v could be layered, for example, and the Green's function

* expansion would be in terms of the eigenfunctions for the

layered medium. Thus we can build in the effects of medium

boundaries in the expansion for Um (c,t) in V I For

example, if the space were a half space or a spherical

* region and v (the "source" volume) was near or intersected2
the outer boundary of the space, we would use an eigen-

function expansion for r"a involving half space or spheri-

cal wave functions that satisfied the boundary condition on

* the medium external boundary.
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Finally we note that 3.34 applies to one, tWo or

three dimensional problems where 3V is to be interpretedI
in general as the boundary of the space, so that if the

problem is two-dimensional, then 3V is a curve. Then use1
of the Green's function appropriate to the dimensionality

of the space gives the representation of um

We can also represent urm in the frequency domain
using previous integral results. We have as the frequency
domain version of 3.34 from 3.22 :

4wIum(xiw) f {r' TIk nk)-uLRrk)}d

This representation can be used in the same way as , but
is somewhat simpler to use since the Green's function eigen-
function expansions for the space are easier to obtain and
express in the frequency domain than are those for the time
domain.

With regard to simplifying the analytical procedures
required by 3.34 and 3.34 in order to express u in v
as a multipolar (or eigenfunction) expansion, it is often
appropriate to generate the potentials X in V from1

known values on the boundary 8v . Then, of course u m
and associated fields can be calculated in v

1

Thus, if we choose to use the X for the representa-
tion, then we have that X in V is given by:

a1t t

" 4 1Xa(r,t) j dt f {GV X-XVG " n da* (3.36)

e0

u3
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from Eq. (32). In the frequency domain we have

4 w x&(r,.} = GV 0 -XVGJ * f dan (3.37)

V

We then can use 3.27 or 3.28 to obtain the displacement field.

Equations 3.36 and 3.37 have the same structure as do the
more complex equations 3.34 and 3.35., but are more restricted
in that these results are obtained for the case of a homo-
geneous, isotropic medium whereas 3.34and 3.35 are general
in this respect. Nevertheless, we may consider the region
V (the "source" region) to be, to a reasonable approxima-a
tion in most instances, confined to a homogeneous isotropic
medium "layer" or subregion. In this case V is only the1
region within this layer and 3.36 and 3.37 given only the
field in this subregion. To obtain the field in the whole
space occupied by the (layered) medium we must adjoin this
subregion field representation to eigenfunction expansions
in the other layers or subregions; this process of connect-
ing subregion solutions or eigenfunction expansions is
accomplished in the usual way by applying boundary conditions
at the subregion interfaces (continuity conditions). Hence
the restriction of 3.36 and 3.37 to a subspace of the whole
space does not generally reduce the usefulness of the expan-

* sion procedure implied by these results.

One important result arises when v can be considered2
to occupy only one subregion of the entire medium in which the
material properties are essentially constant and, as a conse-
quence, that can also be considered to be the extension

of this homogeneous zone. Then we can use the infinite space
Green's function for G in to generate - . We have
in this case, using the Green's function expansion in spherical
eigenfunctions in a whole space:

S
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(r, fg (A kcosm# + B ksiLl

t=O k=O

k (cosO) h(2) (k r) (3.38)

A k(W) ~ja ~ I~1I [Xn~cs,.cosk* jkr

IkIB~~lL lai* IJ lsnk
1

-~ a[V{(cs)(cosk \/- .1Pk(Coss j si itl(k r0 n da0  (3.39)

Here

C (2-6 ) (1+k)!
1k k* (L+k) I

We may, of course, take Ov to be a spherical surface en-2
closing V, but this is not necessary and 8v can be any
convenient surface enclosing V .

6In case V2 and V1  intersect an external boundary of

the medium (a free surface) then an appropriate appraoch is

to use a half space Green's function representation. This

can be accomplished by using a Green's function expansion in
eigenfunctions for the half space, or by use of an image

source, etc.
If we use the time domain representation 3.36 rather

than 3.37 to represent the field, then

4wX (r't) dt 4fv GVX-XVGI " daO (3.40)

0 a I

V
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When the infinite space Green's function can be approximately

used, then we have:

+

4 x (r, t) =f dt] dao .{ r*a V oXa

- 0[ 6 (o r* n} (3.41)

However, we have, interchanging the integrations over

t and av , that

t+

o ( t i__ 6 (to~t~r./va) o t * to 1 . (r,tr./va)

0

f [ 6 (t t+r*/va~ t

XCL r*] a dt o

-- 6 (t -t+r'/v ) V r* d

rr* I*
S Xa6 (to-t+r*/v) +- 6(to-t+ - dt o

r, (r t-r*/v ) + Xr*(* CLa v 1at at =t-r*/va

where r* is the unit vector in the direction from a source

point to the receiver point (see Figure 1).

0
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Hence, we have:

47rXa,(r,t) - X
av

I

n^ dao (3.42)
v,,r* BJt0 =t-r*/vL

Thus, with V Xa, X. and X ,/Dt specified (numerically or
otherwise) on 3v where this surface may be chosen arbi-1

trarily so long as it encloses v , we can compute X. in

v in the time domain. Methods of integration of 3.421

41 using expansions of l/r*, in terms of spherical eigenfunctions are

straightforeward (e.g., see Archambeau, 1968).

The same procedure of integration over t which

leads to 3.42 can also be applied to 3.34, the Green's
integral representation of u m(x,t) , using the Green's tensor.

To summarize the approach outlined in this application,

we observe that the Green's function integral representation

provides us with a method of representing the field in the

elastic zone in analytic terms when the field is specified
on the boundary of the elastic zone. This representation,

therefore, provides us with a way of representing a non-
linear source of energy by a linear (elastic) equivalent

source that gives us the identical field in the elastic zone
surrounding the complex (nonlinear) source zone. Further,

it gives an expression for this field in an analytic form
which is appropriate for the analysis of the further propaga-

tLon of this source field in the complex (layered) elastic

medium surrounding the source.

S
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Application to Numerical Problems: Transparent Grid

Boundaries. We can easily make use of the previous results to

show how a numerical grid boundary can be made "transparent"

to the propagation of elastic waves. We will treat the simple

case involving potentials Xa here to ,ilustrate the method.

In particular, consider 3V to be the boundary de-1
fined by the grid points at one grid spacing within the

grid system as shown in Figure 3.2. Let V be the grid region.

Now we wish to treat the region exterior to V (and within2

therefore) to be an infinite space so that in this case

the points on the actual grid boundary are in v and so1
will transmit energy as if they were in an infinite space

rather than as the terminal points of a numerical grid. To
A do this we are merely required to predict the fields at the

grid boundary points BgC V using the values of the fields
g 1

specified on av in an infinite space Green's function inte-1
gral representation. If we do this, then the boundary of

the grid will deform as if it were in an infinite space

rather than at the termination poihts of the grid and no

energy will be reflected back into the numerical grid.

Using the potentials x (r,t) we observe that the

fields at the grid boundary are given by 3.42, where we

set r = r as the coordinate vector of points on B
- g

Further, replacing r* by R where

R = Ir - rIg -g -

where r are the "source" points on 3v in 3.42, then we-o 1
have for the potentials on B

g
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GRID Vy

BOUNDARY
BgV

,

XX2

X 
1

the surface at one grid spacing inside the grid boundary. aV.
is viewed as the boundary to an external infinite space, where
fields are defined by a Green's function integral.

I
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